• Home
  • About Us
  • Contact Us
Semiconductor for You
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

Researchers Make Inkjet Printable 2D Semiconductors

Semiconductor For You by Semiconductor For You
February 1, 2017
in Semiconductor News
0
ADVERTISEMENT

Method for producing biocompatible water-based inks could bring 2D crystal heterostructures from the lab to real-world products.

 

 

 

 

173502248013392

 

 

 

Above: Fully inkjet-printed heterostructures on Si/SiO2. a, Schematic of an all-printed GrB/WS2/GrT heterostructure on Si/SiO2. b, Left: Optical picture of an array of 4 x 4 GrB/WS2/GrT heterostructures printed on Si/SiO2. Right: Optical picture of one of the heterostructures, showing the two graphene electrodes and the square of photoactive material.

Researchers at the University of Manchester, led by Cinzia Casiraghi, have developed a method of producing water-based and inkjet printable 2D material inks, which could bring 2D crystal heterostructures from the lab into real-world products such as smart packaging applications and identification tags. Notably these inks are biocompatible, which extends their use to biomedical applications.

As well as graphene, the team has successfully exfoliated and printed a range of 2D semiconductors including MoS2, WS2 and hexagonal boron nitride (h-BN). Using this approach, it has developed efficient light detectors, and programmable logic memory devices able to store information encoded in binary form. The work was done in collaboration with the University of Pisa and the results reported in Nature Nanotechnology.

2D materials show great promise for use in flexible electronics, because their atomic thickness allows for maximum electrostatic control, optical transparency, sensitivity and mechanical flexibility. In addition, because 2D crystals are characterised by out-of-plane van der Waals interactions, they can be combined easily in one multilayer stack, offering unprecedented control of the properties and functions of the resulting heterostructure-based device.

In this framework, inkjet printing can provide an attractive route to low-cost and large-scale fabrication of heterostructures on any substrate. Furthermore, inkjet printing allows the fabrication of very complex heterostructures, which can provide multiple functions and improved performance. In contrast, methods such as vacuum filtration and spin/spray coating, which have been used previously, offer poor control of the thickness and roughness of the layers and have limited design flexibility, according to the researchers.

Current ink formulations, which would allow heterostructures to be made by simple and low-cost methods, are far from ideal – either containing toxic solvents or requiring time-consuming and expensive processes. In addition, none are optimised for heterostructure fabrication.

Casiraghi said: “Due to the simplicity, flexibility and low cost of device fabrication and integration, we envisage this technology to find potential in smart packaging applications and labels, for example for food, pharmaceuticals and consumer goods, where thinner, lighter and cheaper and easy to integrate components are needed”.

Daryl McManus, PhD student said: “These inks provide a perfect platform to fully exploit the range of properties of 2D materials by allowing for the first time a precise and scalable method for fabrication of devices of arbitrary complexity utilising 2D materials.”

‘Water-based and biocompatible 2D crystal inks for all-inkjet printed heterostructures’ by Daryl McManus et al; Nature Nanotechnology (2017) doi:10.1038/nnano.2016.281

Content Protection by DMCA.com
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

TME, DC power connectors from Amphenol GEC

TME, DC power connectors from Amphenol GEC

June 27, 2025
Analog Semiconductors Poised to Cross USD 100 Billion by 2032

Analog Semiconductors Poised to Cross USD 100 Billion by 2032

June 26, 2025
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You