• Home
  • About Us
  • Contact Us
Semiconductor for You
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

Analog Devices’ RadioVerse™ SoC Drives 5G Radio Efficiency and Performance

Semiconductor For You by Semiconductor For You
December 14, 2021
in Semiconductor News
0
ADVERTISEMENT

Bengaluru, December 13, 2021 – Analog Devices, Inc. (Nasdaq: ADI) announced a breakthrough RadioVerse™ System-on-Chip (SoC) series providing radio unit (RU) developers with an agile and cost-effective platform to create the most energy efficient 5G RUs in the industry. The new SoC series provides advanced RF signal processing with expanded digital functionality and RF capacity that greatly improves 5G RU performance and energy efficiency. The SoCs are the newest addition to ADI’s RadioVerse ecosystem and combine its award-winning Zero IF (ZiF) architecture with significant advances in functional integration and linearization. ADI’s RadioVerse devices are the most widely used software-defined transceivers in 4G and 5G RUs worldwide.

“Samsung and ADI have long worked together to support the swift deployment of 5G in the global market,” said Dong Geun Lee, Vice President and Head of Hardware R&D Group, Network Business at Samsung Electronics. “We are excited for the successful launch of ADI’s new SoC, as we expect this cutting-edge technology will bring better 5G experience to consumers. We look forward to expanding our engagement with ADI.”

Demand for power efficient RUs is expanding rapidly as global network operators race to deploy 5G infrastructure. With the exponential growth of wireless demand, energy efficiency is a key metric for operators as they seek to reduce their carbon footprint while expanding network capacity. The new RadioVerse SoC series requires very low power compared to alternatives and implements advanced algorithms that deliver optimal RU system efficiency.

“RadioVerse SoCs are designed to optimize the full radio solution rather than just a single component or interface,” said Joe Barry, Vice President of Wireless Communications at Analog Devices. “Each successive generation has provided expanded capabilities, bandwidth and performance, while improving overall RU efficiency. This new RadioVerse SoC series takes a big step forward by delivering multiple advancements in signal processing to meet the demanding needs of 5G.”

The ADRV9040 is the first in the new RadioVerse SoC series. It offers eight transmit and receive channels of 400MHz bandwidth and integrates advanced digital signal processing functions, including carrier digital up-converters (CDUC), carrier digital down-converters (CDDC), crest factor reduction (CFR) and digital pre-distortion (DPD). This expanded signal processing can eliminate the need for a field-programmable gate array (FPGA), thereby reducing thermal footprint, and total system size, weight, power, and cost. The SoC’s DPD algorithms were developed using advanced machine learning techniques and are optimized in close collaboration with major power amplifier (PA) vendors to ease the design burden and deliver best-in-class wide bandwidth performance. The algorithms are fully tested and validated across 4G and 5G use cases, including various PA technology types such as gallium nitride (GaN). In addition, the ZiF radio architecture simplifies RF filtering and signal chain components, reducing RU cost and development time for band and power variants designs.

Learn more about the ADRV9040 RadioVerse SoC at http://www.analog.com/ADRV9040

 

Content Protection by DMCA.com
Tags: 5GSoC
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

New SPI Absolute Encoder Supports 9 mm to 15.875 mm Motor Shafts

New SPI Absolute Encoder Supports 9 mm to 15.875 mm Motor Shafts

June 11, 2025
Infineon Secures the Future with 10 Billion Integrity Guard Chips Delivered

Infineon Secures the Future with 10 Billion Integrity Guard Chips Delivered

June 11, 2025
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You