• Home
  • About Us
  • Contact Us
Semiconductor for You
"
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

Imec Reports Record Perovskite Conversion Efficiency

Semiconductor For You by Semiconductor For You
August 12, 2017
in Semiconductor News
0
ADVERTISEMENT
23.9 percent achieved on a 4cm2 perovskite/silicon solar module outperforms silicon
23.9 percent achieved on a 4cm2 perovskite/silicon solar module outperforms silicon

Belgian research hub Imec has achieved a power conversion efficiency of 23.9 percent with its 4cm2 perovskite/silicon tandem photovoltaic module. Reaching this level, Imec is the first to achieve a module-on-cell stack that outperforms the standalone silicon solar cell.

Perovskite solar cells have many desirable properties, as they can achieve a high power conversion efficiency, are inexpensive to produce, and have a high absorption efficiency in sunlight. By stacking the perovskite solar cells or modules on top of Si solar cells, power conversion efficiencies above 30 percent can potentially be achieved, surpassing the efficiencies of the best single junction silicon solar cells.

In 2016, Imec presented for the first time a semi-transparent perovskite module stacked on top of an interdigitated back-contact (IBC) crystalline silicon solar cell in a four-terminal tandem configuration, achieving an overall power conversion efficiency of 20.2 percent on an aperture area of 4cm2. Like the latest announcement, this was developed in collaboration with Solliance, a partnership of R&D organisations from the Netherlands, Belgium and Germany working on thin film PV.

Imec is now reporting a significant improvement of this technology resulting in a record high power conversion efficiency for the module-on-cell stack of this size.
“Two innovations are key to this achievement,” explained Tom Aernouts, group leader for thin-film photovoltaics at imec and perovskite PV program manager at Solliance. “First, a different perovskite material (CsFAPbIBr) was used, largely improving the stability and conversion efficiency of the 4cm² semi-transparent perovskite module to 15.3 percent. Second, the architecture of the stack was optimised for minimal optical losses by adding an anti-reflection texture on top of the module and a refractive index matching liquid between the perovskite module and the silicon solar cell.”

The perovskite/silicon four-terminal tandem was realised with matched aperture areas as large as 4cm2 for the perovskite module and the silicon solar cell.

“Having matched areas of this size makes the fabrication technology more attractive to the solar cell industry,” commented Aernouts. “For reference, we have also fabricated a stack of a small perovskite cell (0.13cm2) on top of an IBC c-Si cell (4cm2). In this configuration, the power conversion efficiency of the small semi-transparent perovskite cell is 16.7 percent, outperforming the larger 4cm2 perovskite module due to better perovskite layer properties. Although less attractive from an industrial point of view, the overall power conversion efficiency of this cell-on-cell stack is as high as 25.3 percent.”

Content Protection by DMCA.com
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

Infineon 2021 fiscal year off to a good start

Infineon, Visteon Collaborate to Deliver High-Performance Power Conversion for Next-Gen EVs

May 9, 2025
Infineon SEMPER™ NOR Flash memory family achieves ASIL-D functional safety certification

Infineon SEMPER™ NOR Flash memory family achieves ASIL-D functional safety certification

May 9, 2025
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You