• Home
  • About Us
  • Contact Us
Semiconductor for You
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

Low-Power BioZ AFE by Analog Devices Shrinks Size for BioZ Monitoring

Semiconductor For You by Semiconductor For You
March 11, 2022
in Semiconductor News
0
ADVERTISEMENT

Bengaluru, March 11, 2022 – Reduce the size and extend the life of bioimpedance (BioZ) remote-patient monitoring (RPM) devices with the MAX30009 low-power, high-performance BioZ analog front-end (AFE) from Analog Devices, Inc. (ADI). For developers of small, battery-powered, continuously wearable devices, this AFE on a chip offers clinical-grade vital sign measurements of bioimpedance analysis for patient health assessment for wellness wearables and medical-grade patches.

  • Download data sheet here
  • Connect with ADI remote-patient monitoring experts on EngineerZone™, an engineering community forum: https://ez.analog.com/interface-isolation

Many vital signs monitors, chest patches, stress monitors, BioZ and wearable healthcare devices must operate on a small battery as part of small, compact designs that emphasize convenience and comfort. The MAX30009 is a low-power design with a range of options to enable use-case power optimization that reduces the draw on tiny batteries, thus extending the operational life of BioZ wearables. It reduces power consumption by 62 percent compared to the closest competitive product to extend measurement periods for body-worn patches, and vital signs monitoring devices. The highly integrated AFE is also 30 percent smaller than the closest competitor, allowing designers to reduce the size of vital signs measurement devices, making them more comfortable and convenient for consumers and patients.

Bioimpedance analysis devices are popular and convenient ways healthcare professionals measure body fat percentage and body composition (such as respiration and impedance cardiography.) The MAX30009 monitors a comprehensive range of BioZ modalities through simultaneous I and Q measurements, 2-electrode (bipolar) and 4-electrode (tetrapolar) configurations. This enables flexible inputs for BioZ modality measurements as well as a wide range of sample rates to support various medical BioZ measurements. A wider range allows more profound insights into patient health by measuring respiration rate, galvanic skin response and electrodermal activity, body composition and fluid analysis, bioimpedance spectroscopy, impedance cardiography and plethysmography.

MAX30009 BioZ AFE Key Features:

  • Smaller Size: high level of integration enables 30 percent smaller design to reduce size and improve patient comfort
  • Lower Power: Consumes 62 percent lower power to reduce power
  • High-Performance: Measuring from both I and Q channels, 2-electrode and 4-electrode configurations as well as sample rates from 16sps to 4ksps and a wide frequency range of 16Hz to 891KHz

“Healthcare wearables are saving lives by measuring the health of millions of patients with a broad range of conditions. Through bioimpedance (BioZ), medical professionals and scientists have been able to gain access to a new plethora of clinically meaningful physiological parameters that now can directly benefit consumers, including stress, hydration levels, and early detection of cancer,” said Dr. Benjamin Sanchez, Assistant Professor of ECE at University of Utah and bioimpedance expert. “I use devices like the MAX30009 AFE in my research and they play a valuable role in making BioZ monitoring more ubiquitous for healthcare device designers and fitness consumers.”

Pricing and Availability

Product Full

Production

 

Price Packaging
MAX30009 NOW $5.26 per 1,000 Units 2.028mm x 2.028mm, 25-bump wafer-level packages (WLP)
MAX30009EVKIT# NOW $198.22 N/A
Content Protection by DMCA.com
Tags: Analog DeviceshealthcareSemiconductorsWearables
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

New SPI Absolute Encoder Supports 9 mm to 15.875 mm Motor Shafts

New SPI Absolute Encoder Supports 9 mm to 15.875 mm Motor Shafts

June 11, 2025
Infineon Secures the Future with 10 Billion Integrity Guard Chips Delivered

Infineon Secures the Future with 10 Billion Integrity Guard Chips Delivered

June 11, 2025
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You