• Home
  • About Us
  • Contact Us
Semiconductor for You
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

Oxford Instruments using NPL’s non-destructive quality control method to commercialize wafer-scale fabrication of 2D molybdenum disulphide

Semiconductor For You by Semiconductor For You
July 14, 2017
in Semiconductor News
0

UK-based Oxford Instruments says that a world-first non-destructive quality control method developed by the UK’s National Physical Laboratory (NPL) has enabled it to commercialize wafer-scale fabrication technology for the two-dimensional (2D) semiconducting material molybdenum disulphide (MoS2).

While graphene was the first 2D material to be studied in detail, there is now also a focus on other 2D materials with diverse properties and new applications. Among these, single-layer MoS2 is generating interest due to electronic and optical properties that could pave the way for next-generation electronics and optoelectronics devices.

To commercialize electronic devices made of 2D materials, industry faces a challenge to carry out quality control checks without destroying or damaging the material. As a single layer of a 2D material is only a single atom or molecule thick, assessing its quality so far has only been possible using destructive techniques. Defects are expected to critically impact the performance of MoS2-based electronic devices, so the ability to investigate and quantify the number of defects without causing damage is crucial for enabling large-scale manufacture of the material, device fabrication and material functionalization.

Oxford Instruments sought to develop a new deposition system and process that could produce MoS2in a more industrially scalable manner to help further the commercialization of MoS2. The researchers needed a suitable quality control approach, and turned to NPL’s National Graphene Metrology Centre (NGMC), which has experise in the characterization and measurement of 2D materials.

“We were investigating the use of Raman spectroscopy for characterizing MoS2 and found that it is a viable high-throughput and non-destructive technique for quantifying defects,” says Dr Andrew Pollard, senior research scientist at NPL. “Importantly for this study we could controllably introduce known defects into MoS2 as a first step, using a technique from our previous work in graphene,” he adds.

“We were able to use NPL’s industrially focused research as a framework for developing our own quality control measure that uses Raman spectroscopy to quantify defects in MoS2 produced using chemical vapour deposition (CVD),” notes Dr Ravi Sundaram, senior scientist at Oxford Instruments. “While such techniques are widely used for graphene, there was no established way of checking the quality of MoS2 in a non-destructive manner before NPL’s work was published,” he adds. “Being able to measure the quality of the material enables us to optimize the growth process. This ensures we are able to provide very high-quality, low-defect-density MoS2 films from our tools.”

NPL’s work on MoS2 provided Oxford Instruments with the methodology needed to develop its own quality control process, which characterizes the 2D MoS2 layers without having a destructive impact on the material’s structure. This enables the team to efficiently characterize the MoS2 produced via an industrially scalable technology, helping to accelerate the commercialization of 2D materials.

“We have both academic and industry customers who are looking for efficient production and characterization of these novel materials,” says Ravi. “MoS2 is a promising material for electronics, and quite a few industries are interested in it. Being able to manufacture it efficiently is vital to making the material commercially viable and attractive, and this technique has helped us offer a high-quality and competitive product to our customers.”

MoS2 shows promise in both electronics and optoelectronics. Its inherently thin atomic structure not only offers several advantages in scaling down traditional electronics but also opens up the possibility of adding further functional elements on a chip for applications such as sensors. In addition, its semiconducting electronic structure renders it interesting for optical applications such as photovoltaics and light emission. As such, scaling up the MoS2 production and assessing its quality using non-destructive approaches offers vast benefits not only to manufacturers, but also to the industry as a whole, says the firm.

Content Protection by DMCA.com
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

Infineon AIROC™ CYW20829 Bluetooth LE SoC ready with latest Bluetooth 5.4 specification

Infineon AIROC™ CYW20829 Bluetooth LE SoC ready with latest Bluetooth 5.4 specification

March 24, 2023
Ultra-Low Quiescent Wide Input Voltage LDO from Diodes Incorporated Addresses Needs of 12V and 24V Automotive Systems

Ultra-Low Quiescent Wide Input Voltage LDO from Diodes Incorporated Addresses Needs of 12V and 24V Automotive Systems

March 24, 2023
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT