• Home
  • About Us
  • Contact Us
Semiconductor for You
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

Pulsed ion beams reveal nonlinearity of radiation defect dynamics in silicon carbide

Semiconductor For You by Semiconductor For You
April 14, 2017
in Semiconductor News
0

Credit: Lawrence Livermore National Laboratory

Materials scientists at Lawrence Livermore National Laboratory (LLNL) got a step closer to understanding defect interaction dynamics in silicon carbide.

When an energetic particle, such as a neutron or an ion, impinges onto a material, the particle penetrates and creates displacements by ballistic processes of knocking off lattice atoms from their equilibrium positions. These knocked-off atoms often have kinetic energy high enough to displace other nearby atoms. As a result, a cascade of atomic displacements is created along the ion trajectory.

Energetic ions with different masses create collision cascades with different displacement densities. Heavy ions create dense collision cascades, while cascades produced by light ions and neutrons are diluted with much larger average distances between displacements within each cascade.

Such cascade densities are not just an intellectual curiosity. For many non-metallic materials, the density of collision cascades determines how easily the material gets damaged under irradiation. However, the effects of collision cascade densities on radiation defect dynamics remained essentially unexplored. Radiation defect dynamics generally remains one of the most complex, poorly understood and heavily debated topics in the radiation damage community.

Silicon carbide is used to power electronic devices, such as a transistor, that operate at high-temperature and high-voltage. Furthermore, silicon carbide has been investigated for its feasibility as nuclear fuel cladding.

In a study published in the March 17 edition of Scientific Reports , a team from LLNL and Texas A&M University used a recently developed pulsed ion beam method to investigate how radiation damage in silicon carbide is influenced by the density of collision cascades. Silicon carbide is a nuclear ceramic and wide-band-gap semiconductor material. The team systematically studied radiation defect dynamics in silicon carbide bombarded with different ions that create collision cascades with densities in a wide range. The researchers used pulsed ion beams to measure lifetimes of mobile defects and developed a new method to calculate cascade densities.

The team found that denser collision cascades not only create more damage but also evolve much slower than diluted cascades. Their work is the first demonstration that, in addition to the dose rate, defect interaction dynamics in silicon carbide strongly depends on the cascade density.

“This study is another example of how the development of novel experimental methods can help us better understand the basic radiation damage processes,” said LLNL scientist L. Bimo Bayu Aji, the lead author of the paper.

“This work shows that silicon carbide is expected to damage differently in radiation environments characterized by different neutron fluxes and energies, and that any truly predictive modeling of radiation damage needs to include defect interaction dynamics,” said Sergei Kucheyev, the LLNL project lead.

 

Content Protection by DMCA.com
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

SEGGER’s Ozone now available for macOS on the M1/M2 (ARM-core) by popular demand

SEGGER’s Ozone now available for macOS on the M1/M2 (ARM-core) by popular demand

March 28, 2023
Infineon AIROC™ CYW20829 Bluetooth LE SoC ready with latest Bluetooth 5.4 specification

Infineon AIROC™ CYW20829 Bluetooth LE SoC ready with latest Bluetooth 5.4 specification

March 24, 2023
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT