• Home
  • About Us
  • Contact Us
Semiconductor for You
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

Researchers Build First Room Temperature 2D Nanolaser

Semiconductor For You by Semiconductor For You
June 3, 2021
in Semiconductor News
0
ADVERTISEMENT

Researchers from Arizona State University and Tsinghua University, Beijing, China have built what they think is the first room temperature single layer nanolaser. Details of the new laser, which is made of 2D MoTe2 and silicon, are published in the July online edition of Nature Nanotechnology.

Single layer nanolasers have been developed before, but they all had to be cooled to low temperatures using a cryogen like liquid nitrogen or liquid helium. “Being able to operate at room temperatures opens up many possibilities for uses of these new lasers,” said Cun-Zheng Ning, an ASU electrical engineering professor who led the research team.

Lasers this size could potentially send information between different points on a single computer chip or be useful for other sensing applications in a compact, integrated format.

A laser needs two key pieces – a gain medium that produces and amplifies photons, and a cavity that confines or traps photons. While such materials choices are easy for large lasers, they become more difficult at nanometer scales for nanolasers. The choice of two-dimensional materials and the silicon waveguide enabled the researchers to achieve room temperature operation. Excitons in MoTe2 emit in a wavelength that is transparent to silicon, making silicon possible as a waveguide or cavity material.

Nanolasers could potentially send information between different points on a single computer chip
Nanolasers could potentially send information between different points on a single computer chip

The laser is pumped by a continuous-wave excitation, with a threshold density of 6.6 W cm–2. Its line-width is as narrow as 0.202 nm with a corresponding Q of 5,603, the largest value reported for a transition metal dichalcogenide (TMD) laser. This demonstration establishes TMDs as practical materials for integrated TMD–silicon nanolasers suitable for silicon-based nanophotonic applications in silicon-transparent

Precise fabrication of the nanobeam cavity with an array of holes etched and the integration of 2Dl monolayer materials was also key to the project. Excitons in such monolayer materials are 100 times stronger than those in conventional semiconductors, allowing efficient light emission at room temperature.

“A laser technology that can also be made on silicon has been a dream for researchers for decades,” said Ning. “This technology will eventually allow people to put both electronics and photonics on the same silicon platform, greatly simplifying manufacture.”

Silicon does not emit light efficiently and therefore must be combined with other light emitting materials. Currently, other semiconductors are used, such as InP or InGaAs which are hundreds of times thicker, to bond with silicon for such applications.

The new monolayer materials combined with silicon eliminate challenges encountered when combining with thicker, dissimilar materials. And, because this non-silicon material is only a single layer thick, it is flexible and less likely to crack under stress, according to Ning.

Looking forward, the team is working on powering their laser with electrical voltage to make the system more compact and easy to use, especially for its intended use on computer chips.

‘Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity’, by Yongzhuo Li et al.; Nature Nanotechnology (2017).

Content Protection by DMCA.com
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

New SPI Absolute Encoder Supports 9 mm to 15.875 mm Motor Shafts

New SPI Absolute Encoder Supports 9 mm to 15.875 mm Motor Shafts

June 11, 2025
Infineon Secures the Future with 10 Billion Integrity Guard Chips Delivered

Infineon Secures the Future with 10 Billion Integrity Guard Chips Delivered

June 11, 2025
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You