• Home
  • About Us
  • Contact Us
Semiconductor for You
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • Automotive
    • Consumer Electronics
    • IoT
    • Lighting
    • Power Management
    • Wireless
    • Personal Electronics
    • Hardware & Software
    • Research
    • Medical Electronics
    • Embedded Design
    • Aerospace & Defence
    • Artificial Intelligence
  • DIY Projects
  • Market
  • Industries
    • Renesas Electronics
  • Knowledge Base
  • Events
  • Tools
    • Resistor Color Code Calculator
No Result
View All Result
Semiconductor for You
No Result
View All Result
Home Semiconductor News

US DOE awards SUNY Poly $720,000 ARPA-E grant to develop GaN-based power switches as part of PNDIODES program

Semiconductor For You by Semiconductor For You
July 21, 2017
in Semiconductor News
0

State University of New York (SUNY) Polytechnic Institute says that interim dean of graduate studies professor Fatemeh (Shadi) Shahedipour-Sandvik and her team of collaborators have been selected to receive $720,000 in federal funding from the US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E). The grant will be used to develop more efficient and powerful high-performance power switches for power electronics applications, such as for enabling a more efficient energy grid. The research – to explore advanced doping and annealing techniques for gallium nitride (GaN)-based power devices – is in partnership with Dr Woongje Sung of SUNY Poly, the Army Research Lab (ARL), Drexel University, and Gyrotron Technology Inc.

“This award is a strong indicator of how SUNY Poly’s resources and facilities are enabling the types of research that have the potential to improve power electronics devices which have become ubiquitous, from those utilized to make the power grid more efficient, to those that can improve electric car capabilities,” notes SUNY Poly’s VP of research Dr Michael Liehr.

“Advanced power electronic devices offer significant advances in power density, efficiency, and reduced total lifecycle cost,” says Shahedipour-Sandvik. “

The SUNY Poly grant is part of $6.9m in funding that ARPA-E is providing through its program Power Nitride Doping Innovation Offers Devices Enabling SWITCHES (PNDIODES) to seven institutions and organizations. With PNDIODES, ARPA-E is tackling a specific challenge in wide-bandgap semiconductor production. Wide-bandgap semiconductor materials such as GaN allow electronic devices to operate at higher temperatures and/or frequencies, for example, than existing silicon-based chips, which is why technical advances in power electronics promise energy-efficiency gains throughout the economy. However, achieving high power conversion efficiency in these systems requires low-loss power semiconductor switches. Power converters based on GaN could potentially meet the challenge by enabling higher-voltage devices with improved efficiency, while also dramatically reducing the size and weight of the device, for example.

The PNDIODES-funded research focuses on selective-area doping. Implemented well, this process can allow the fabrication of devices at a competitive cost compared with traditional silicon-based counterparts. Developing a reliable and usable doping process that can be applied to specific regions of GaN and its alloys is an important obstacle in the fabrication of GaN-based power electronics devices that PNDIODES seeks to overcome. Ultimately, the PNDIODES project teams, including the Shahedipour-Sandvik team and Dr Sung at SUNY Poly as well as the institution’s partners, aim to develop new ways to fabricate semiconductor devices for high-performance, high-power applications like aerospace, electric vehicles, and the grid.

Shahedipour-Sandkvik team’s research (‘Demonstration of PN-junctions by ion implantation techniques for GaN (DOPING-GaN)’) will focus on ion implantation as the centerpiece of its approach and use new annealing techniques to develop processes to activate implanted silicon or magnesium in GaN to build p-n junctions. Utilizing a unique technique with a beam from a gyrotron (a high-power vacuum tube that generates millimeter-wave electromagnetic waves), the team aims to understand the impact of implantation on the microstructural properties of the GaN material and its effects on p-n diode performance.

In addition to this GaN-focused research being conducted by Shahedipour and her team at SUNY Poly (which also provides hands-on research opportunities for a number of the institution’s students), SUNY Poly and General Electric also lead the New York Power Electronics Manufacturing Consortium (NY-PEMC) with the goal of developing and producing low-cost, high-performance 6” silicon carbide (SiC) wafers for power electronics applications. The consortium announced first production of SiC-based patterned wafers in February at the Albany NanoTech Complex’s 150mm SiC line, with production coordinated with SUNY Poly’s Computer Chip Commercialization Center (Quad-C), located at its Utica campus where the SiC-based power chips will be packaged.

Content Protection by DMCA.com
Semiconductor For You

Semiconductor For You

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless
Semiconductor for You

Semiconductor For You is a resource hub for electronics engineers and industrialist. With its blend of
technology features, news and new product information, Semiconductor For You keeps designers and
managers up to date with the fastest moving industry in the world.

Follow Us

Browse by Category

  • Aerospace and Defence
  • Articles
  • Automotive
  • Consumer-Electronics
  • Hardware & Software
  • Interview
  • IoT
  • Knowledge Base
  • Lighting
  • Market
  • personal-electronics
  • Power Management
  • Research
  • Semiconductor Events
  • Semiconductor News
  • Technology
  • Wireless

Recent News

SEGGER’s Ozone now available for macOS on the M1/M2 (ARM-core) by popular demand

SEGGER’s Ozone now available for macOS on the M1/M2 (ARM-core) by popular demand

March 28, 2023
Infineon AIROC™ CYW20829 Bluetooth LE SoC ready with latest Bluetooth 5.4 specification

Infineon AIROC™ CYW20829 Bluetooth LE SoC ready with latest Bluetooth 5.4 specification

March 24, 2023
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2022 Semiconductor For You

No Result
View All Result
  • Home
  • Semiconductor News
  • Technology
    • IoT
    • Wireless
    • Power Management
    • Automotive
    • Hardware & Software
  • Market
  • Knowledge Base
  • Tools
    • Resistor Color Code Calculator

© 2022 Semiconductor For You

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT